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Abstract
Atomic scale engineering of materials and interfaces has become increasingly
important in material manufacturing. Atomic layer deposition (ALD) is a
technology that can offer many unique properties to achieve atomic-scale material
manufacturing controllability. Herein, we discuss this ALD technology for its
applications, attributes, technology status and challenges. We envision that the
ALD technology will continue making significant contributions to various
industries and technologies in the coming years.
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In material manufacturing, while the first quarter of the 21st century is, in
retrospect, a blossom of nanoscale manufacturing, the next quarter of the century
will surely be the era of atomic-scale manufacturing. A clearly perceivable trend
in the research community over the last several years is the fast-growing emphasis
on atomic-scale engineering for materials and interfaces. For instance, in the
electronics area, two-dimensional (2D) materials with the layer thickness of only
several atoms have triggered tremendous research interests, as these materials
have been considered the ideal lifeboat to further extend Moore’s law following
the ‘More Moore’ route [1, 2]. In the chemical catalysis area, single-atom
catalysis has sparked significant interest recently, as the local atomic-scale
environment tailoring offers enormous potential for the catalyst design to achieve
diverse thermo-, electro-, and photochemical catalysis functionalities [3]. On the
other hand, as the size of the materials for engineering shrinks down to the
nanometer scale, their surfaces and interfaces, usually of only several atomic
layers, become critical in determining the overall material properties. Defects
located at the surfaces and interfaces are usually the notorious killer of charge
transport and photoemission in optoelectronic devices, and therefore, these
surface/interface defects should be carefully addressed and possibly passivated by
certain atomic-scale manufacturing approach.

All these growing needs in atomic-scale material and interface engineering
have prompted a highly demanding call for material manufacturing technology
that can controllably handle the process precisely at the atomic-layer level for
diverse sophisticated-structured materials. Atomic layer deposition (ALD) is one
of the most effective manufacturing approaches in this regard. ALD utilizes
well-defined surface chemistry reactions and grows materials one atomic layer at
a time. Therefore, the ALD approach is atomic-scale controllable and thus can
offer numerous desired properties for atomic-scale material manufacturing.
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Attributes and applications of ALD have been extensively reviewed in a number
of publications [4–8], including a few published in this special issue; however,
gaps and challenges for this technology are still prominent. To this end, we, in
this perspective, intend to answer the following three key questions for ALD
technology.

1. Why do we need atomic layer deposition?
Over the past decades, the most influential booster of ALD technology has been
the integrated circuits (IC) industry. Driven by the Moore’s law, there has been a
huge demand to make electronic devices smaller and denser. Now in the high-end
IC, many layers are only several nanometers thick and required to be deposited
conformally with angstrom-level uniformity. These layers can only be made by
ALD [7]. As the IC devices become more complex and three-dimensional, ALD
will surely continue to be a crucial player in IC technology. Another important
application area for ALD is solar cells. Commercial crystalline Si photovoltaics
with passivated emitter and rear cell or tunnel oxide passivated contact structures
have both adopted ultrathin ALD Al2O3 layers for passivation [9, 10]. As for
next-generation sensing devices (e.g. CMOS image sensors [11], gas sensors [12],
and chemical sensors [13]) and energy conversion and storage devices (e.g.
perovskite solar cells [14], batteries [15, 16], fuel cells [17], and electrolyzers for
H2 production [18] and CO2 reduction [19]), ALD technology has also been
demonstrated to be important. For example, ALD empowers researchers to
accurately design and fabricate various high-performance components for Li-ion
batteries [20]. It enables precise deposition of ultrathin coating films on the
cathode and anode materials [21], and these coating films can be tailored to
modify the properties of the materials, enhancing their performance and stability
within the battery system [22, 23]. In addition, ALD has also shown great
potential in biomedicine applications, such as drug delivery, tissue engineering,
biosensors, and bioelectronics [24, 25]. Certainly, we cannot list all the
applications of ALD; and with the dynamic advancement of the ALD technology,
many new applications are continuously emerging.

2. How can we achieve atomic layer deposition?
Briefly speaking, a typical ALD process is executed in a cyclic manner, where
each ALD cycle consists of two or more gas-solid surface chemical reactions
performed sequentially. By carefully engineering the precursor molecular
structure and deposition conditions [26], self-limited atomic-layer growth of
material can be realized in each ALD cycle. This self-limited growth behavior is
in stark contrast to a conventional CVD process, where the precursors are
continuously and simultaneously supplied so that the film growth is not
self-limited. Therefore, in ALD, the thickness of the deposited films can be
digitally controlled to realize the atomic level precision (ca. 1 Å). Moreover, the
composition of the deposited films can, in theory, be tuned also at the atomic
level. However, the above attributes rely on the assumption that all involved
surface reaction processes are ideal. Unfortunately, this assumption is almost
never met—non-ideal factors always exist to some extent. For instance, the ALD
byproduct may not be sufficiently volatile to liberate from the surface, which
could block the reactive sites and therefore reduce the per-cycle film growth [27];
the ALD precursor molecule may partly decompose on the surface, which could
lead to impurities in the films [28]. To tackles these issues, one may need to
carefully choose the precursor types and deposition conditions, such as
temperature, pressure, and perhaps using plasma assisting [26]. With optimized
deposition conditions, high-quality heteroepitaxial thin films can also be grown
by ALD [29].

Besides the layer-by-layer growth, area selective deposition (ASD) in atomic
layer has some killer applications in transistor downscaling. Selective ALD
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allows controlled growth in specific regions while leaving adjacent areas intact.
Over time, various template-assisted selective ALD methods and inherently
selective ALD strategies have been developed [30]. The template-assisted process
relies on inhibitors such as self-assembled monolayers. By introducing
molecules, the adsorption of ALD precursors can be blocked, preventing
deposition on passivated areas. To further advance downscaling, inherently
selective ALD techniques have been developed, which include modifying defects
and selectively growing on desired heterogeneity regions like terraces, step edges,
and facets of the same or different materials [31]. The inherent selectivity
originates from thermodynamic differences, and tuning kinetic parameters such
as temperature and partial pressure could expand the selective process window.
More ASD approaches are expected to emerge, providing further advancements
for the semiconductor industry. These approaches heavily rely on nucleation
control, which is closely related to surface reactions. By tuning the substrate’s
electronegativity, alkalinity, or acidity, the selectivity can be enhanced.
Nevertheless, some challenges remain to be addressed. For instance, during
ALD on defined nanopatterns, lateral growth often occurs, resulting in a
‘mushroom’-like structure. To minimize the lateral expansion, orthogonal growth
is being pursued. Additionally, defects in non-growth areas need to continual
elimination during deposition. Incorporating multiple ALD cycles with selective
etching or correction steps appears promising for cleaning or renewing the
non-growth surface.

3. What are the status quo and challenges?
With the great efforts from the ALD community, there have been hundreds of
ALD processes reported so far [32]. Although some materials are still missing,
the capability of ALD has already covered a large portion of materials. However,
when it comes to a specific application, more consideration is needed, particularly
on process compatibility. For instance, in the emerging area of amorphous oxide
semiconductor (AOS) thin film transistors, the ALD Al2O3 gate-dielectric should
be deposited from trimethylaluminum and O3 [33], rather than using water as the
oxygen source, because the latter is detrimental to the underneath AOS channel
materials. Therefore, the compatibility issue should always be cautioned when
adopting a reported ALD process for a new application.

Throughput is also a concern for large-scale ALD processing. Although
wafer-scale processing is mature in the IC industry, several emerging
applications, such as displays and solar cells, need to deposit ALD films on
several m2 large-area substrates and/or with extremely high throughput. To this
end, batch ALD or spatial ALD may be a solution [34]. However, both batch and
spatial ALD are more sensitive to surface reaction kinetics and gas-phase mass
transport. Therefore, a good understanding of surface chemistry is highly
important for large-scale manufacturing. As for the scalable manufacturing
equipment, it is also vital to have optimal reactor designs that ensure uniform film
deposition across large-area substrates. Quantitative optimizations of process
parameters, such as precursor delivery and purge times, precursor partial pressure,
are necessary to increase the production rate and decrease the cost. Additionally,
incorporating in-situ or ex-situ metrology techniques can provide valuable
insights into film thickness, composition, and quality throughout the deposition
process. Advanced control systems that enable real-time monitoring and feedback
control of critical process parameters, including temperature, pressure, precursor
pulse, and exposure time, are crucial for achieving consistent film quality and
reproducibility. Overcoming these challenges requires dedicated efforts and
innovative approaches from engineers and researchers in various fields.

In summary, ALD technology has the potential to revolutionize material
manufacturing by offering atomic-scale controllability and precision on thickness
and composition, resulting in materials and structures with unique and desirable
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properties. The perspectives for ALD technology are promising (figure 1), and
ongoing research is exploring new applications, improving the efficiency and
throughput of the processes, and discovering new materials and structures. As a
result, ALD technology is poised to continue making significant contributions to
various industries and technologies in the coming years.
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